ЭЛЕМЕР-АКД-12К(И)

Лабораторный автоматический калибратор давления

и измерения давления
• Воспроизведение абсолютного, избыточного давления и давления-разрежения

• Прецизионное средство воспроизведения

- 1 или 2 диапазона измерения давления
- Цветной сенсорный экран
- 4 измерительных канала (для ЭЛЕМЕР-АКД-12КИ)
- Автоматизированный процесс поверки датчиков давления (для ЭЛЕМЕР-АКД-12КИ)
- Внесены в Госреестр средств измерений под № 64273-16, ТУ 4381-130-13282997-2015

Сертификаты и разрешительные документы

- Сертификат об утверждении типа средств измерения № 64273-16
- Декларация соответствия TP TC 020/2011 «Электромагнитная совместимость» и TP TC 004/2011 «О безопасности низковольтного оборудования» № ЕАЭС N RU Д-RU.НА68.В.00006/20

Назначение

Автоматический калибратор давления ЭЛЕМЕР-АКД-12К предназначен для прецизионного автоматического воспроизведения и измерения избыточного и абсолютного давления, давления-разрежения. Применяется в качестве рабочего эталона при поверке, калибровке и градуировке датчиков давления, манометров и реле давления.

Опционально оснащается 4-канальным измерительным модулем для рабочих СИ (ЭЛЕМЕР-АКД-12КИ). Позволяет автоматизировать процесс одновременной поверки до 4-х датчиков давления с выдачей протоколов поверки.

Краткое описание

Для работы калибраторов ЭЛЕМЕР-АКД-12К(И) необходим компрессор (или баллон со сжатым газом) и вакуумный насос (для ДА и ДИВ моделей). Давление на входе калибратора через систему пневмонакопителей и быстродействующих отсечных клапанов поступает на выход калибратора. Давление на выходе измеряется эталонными модулями давления, передающими эталонное значение давления в электронный блок управления(ЭБУ) пневматической системой. ЭБУ рассчитывает алгоритм работы клапанов, пропускающих входное давление в накопители, и клапанов, стравливающих давление в атмосферу. ЭБУ непрерывно контролирует выходное давление и осуществляет управление клапанами, что позволяет реализовать плавный выход на заданное значение давления.

При наличии измерительного модуля (модификация ЭЛЕМЕР-АКД-12КИ) калибратор по достижении стабилизированного давления осуществляет измерение сигналов рабочих СИ, сличение их показаний с эталонным значением давления, расчет погрешности и вывод заключения о соответствии заявленному классу допуска.

- Встроенные эталонные модули давления;
- Наличие барометрического модуля (опция);
- Диапазоны воспроизведения и измерений давления:
 - 0...2,5 МПа (ДА);
 - 0...10 МПа (ДИ);
 - –0,1...2,5 МПа (ДИВ);
- Единицы измерений давления кПа, МПа, бар, кгс/см², кгс/м², мм рт.ст., рsi;
- Предел основной приведенной погрешности воспроизведения давления до 0,01% (определяется встроенными эталонными модулями давления);
- Нестабильность поддержания давления за 1 мин не превышает ±0,005 % от верхнего предела измерений диапазона №1 (Р_{в1});
- Время стабилизации давления, не более:
 - 60 с при повышении давления;
 - 90 с при понижении давления;
 - 120 с для исполнений со встроенным источником давления (разрежения);
- Цветной сенсорный экран 800×480 dpi с LED-подсветкой;
- Возможность подключения к калибратору беспроводного комплекта клавиатуры и мыши;

- Дополнительные возможности модификации ЭЛЕМЕР-АКД-12КИ:
 - 4 измерительных канала (унифицированные сигналы мА, мВ, В);
 - Встроенные блоки питания = 24В для измерительных каналов;
 - Поддержка НАRT-протокола (конфигурирование, подстройка и градуировка датчиков давления);
 - Возможность реализации автоматизированных алгоритмов поверки датчиков давления с выдачей протоколов;
- Внешнее ПО АРМ-АКД;
- Напряжение питания ~187...242 В, (50 ±1) Гц;
- Габаритные размеры, мм, не более:
 - длина 470;
 - ширина 410;
 - высота 200:
- Масса, кг, не более:
 - Для моделей х3х, х5х 14;
 - Для моделей x6x, x7x 17.

Показатели надежности и гарантийный срок

- ЭЛЕМЕР-АКД-12К(И) соответствуют:
 - По устойчивости к климатическим воздействиям группе исполнения В1 (+10...+35 °C), согласно ГОСТ Р 52931-2008;
 - По степени защиты от попадания внутрь твердых тел, пыли и воды IP20, согласно ГОСТ 14254-96;
- Средняя наработка на отказ 100000 часов;
- Средний срок службы 12 лет;
- Межповерочный интервал 1 год;
- Гарантийный срок эксплуатации 1 год.

Метрологические характеристики

Таблица 1. Модельный ряд ЭЛЕМЕР-АКД-12К(И)

Код модели	Вид измеряемого давления	Диапазон измерений № 1	Диапазон измерений № 2	Индекс модели (код класса точности)
031	абсолютное	0120 кПа	_	A0, A, B
131	избыточное	0100 кПа	_	А, В
132	избыточное	0100 кПа	025 кПа	А, В
151	избыточное	0600 кПа	_	А, В
161	избыточное	02,5 МПа	_	A0, A, B
162	избыточное	02,5 МПа	00,6 МПа	A0, A, B
171	избыточное	06,0 МПа	_	A0, A, B
172	избыточное	06,0 МПа	02,5 МПа	A0, A, B
171E	избыточное	010 МПа	_	A0, A, B
172E	избыточное	010 МПа	02,5 МПа	A0, A, B
321	избыточное-разрежение	−1010 кПа	_	A, B
351	избыточное-разрежение	–100600 кПа	_	A, B
352	избыточное-разрежение	–100600 кПа	−100160 кПа	A, B
054	абсолютное	0600 кПа		40. A. B.
851	избыточное-разрежение	–100600 кПа	_	A0, A, B
052	абсолютное	0600 кПа	0250 кПа	40. A. B.
852	избыточное-разрежение	–100600 кПа	–100160 кПа	A0, A, B
0.01	абсолютное	02,5 МПа		40. A. B.
861	избыточное-разрежение	− 0,12,5 МПа	_	A0, A, B
000	абсолютное	02,5 МПа	00,6 МПа	40. A. B.
862	избыточное-разрежение	–0,12,5 МПа	−0,10,6 МПа	A0, A, B

^{* —} по согласованию возможно изготовление АКД-12К с другим диапазоном № 2 (только для индексов модели А и В).

Таблица 2. Основные метрологические характеристики ЭЛЕМЕР-АКД-12К(И)

	Диапазон измерений	Диапазон измерений	Пределы допуск	аемой основной абсолют	ной погрешности
Код модели	№ 1 (поддиапазон	№ 2 (поддиапазон			
	измерений давления)	измерений давления)	A0	A	В
	0120 кПа	_	±0,0001 × P _B	_	_
031	048 кПа	_	_	±0,0001 × P _B	±0,0002 × P _B
	48120 кПа	_	_	±0,00025 × P	±0,00050 × P
121	040 кПа	_	_	±0,0001 × P _B	±0,0002 × P _B
131	40100 кПа	_	_	±0,00025 × P	±0,00050 × P

Код модели	Диапазон измерений № 1 (поддиапазон измерений давления)	Диапазон измерений		Индекс модели	
		измерении давления)	A0	Α	В
400	040 кПа	-	_	±0,0001 × P _B	±0,0002 × P _B
132	_	025 кПа	-	±0,00025 × P	±0,00050 × F
	40100 кПа	_	_	±0,00025 × P	±0,00050 × F
151	0240 кПа	_	_	±0,0001 × P _B	±0,0002 × P _E
	240600 кПа	_	_	±0,00025 × P	±0,00050 × F
	02,5 МПа	-	$\pm 0,0001 \times P_{_{B}}$	-	_
161	01 МПа	-	_	±0,0001 × P _B	±0,0002 × P _B
	12,5 МПа	_	_	±0,00025 × P	±0,00050 × F
	02,5 МПа	00,6 МПа	±0,0001 × PB	_	_
162	01 МПа	00,24 МПа	_	±0,0001 × P _B	±0,0002 × P _E
	12,5 МПа	0,240,6 МПа	_	±0,00025 × P	±0,00050 × F
	06,0 МПа	_	±0,0001 × P _B	_	_
171	02,4 МПа	_	_	±0,0001 × P _R	±0,0002 × P
	2,46,0 МПа	_	_	±0,00025 × P	±0,00050 × F
	06,0 МПа	02,5 МПа	±0,0001 × P _g	_	_
172	о2,4 МПа	01 МПа	, B	±0,0001 × P _s	±0,0002 × P
,	2,46,0 МПа	12,5 МПа	_	±0,0001×1 _B	±0,00050 × F
	2,40,0 WΠa	- I2,3 IVIIIa	±0,0001 × P _B		_0,00030 ^ [F
171E	04 МПа			±0,0001 × P _B	+0.0003 × 0
1/10		_	-	•	±0,0002 × P _E
	410 МПа	0.3545	+0.0004 5	±0,00025 × P	±0,00050 × F
4705	010 МПа	02,5 МПа	±0,0001 × P _B	—	_
172E	04 МПа	01 МПа	_	±0,0001 × P _B	±0,0002 × P
	410 МПа	12,5 МПа	_	±0,00025 × P	±0,00050 × F
321	–1010 кПа	-	_	±0,00025 × P _B	±0,00050 × P
351	–100240 кПа	-	_	±0,0001 × P _B	±0,0002 × P _E
331	240600 кПа	_	_	±0,00025 × P	±0,00050 × F
	_	−100−64 кПа	-	±0,00025 × P	±0,00050 × F
352	–100240 кПа	−6464 кПа	_	$\pm 0,0001 \times P_{B}$	±0,0002 × P _E
	240600 кПа	64160 кПа	_	±0,00025 × P	±0,00050 × F
	0600 кПа	_	±0,0001 × P _B	_	_
	0240 кПа	_	_	±0,0001 × P _R	±0,0002 × P
	240600 кПа	_	_	±0,00025 × P	±0,00050 × F
851	–100600 кПа	_	±0,0001 × P _g	_	_
	−100240 кПа	_	, B	±0,0001 × P _R	±0,0002 × P,
	240600 кПа	_	_	±0,00025 × P	±0,00050 × F
	0600 кПа	0250 кПа	±0,0001 × P _B		
	0240 кПа	0100 кПа		±0,0001 × P _g	±0,0002 × PE
				•	
852	240600 κΠa -100, 600 κΠa	100250 кПа	+0.0001 × D	±0,00025 × P	±0,00050 × F
032	−100600 кПа	100 64 5	±0,0001 × P _B	+0.00035 121	
		−100−64 кПа	-	±0,00025 × P	±0,00050 × F
	−100240 кПа	−6464 кПа	_	±0,0001 × P _B	±0,0002 × P ₁
	240600 кПа	64160 кПа —	+0.0001 × 0	±0,00025 × P	±0,00050 × F
	02,5 МПа	_	±0,0001 × P _B		+0.0003
	01 МПа	_	_	±0,0001 × P _B	±0,0002 × P _E
861	12,5 МПа	_	_	±0,00025 × P	±0,00050 × F
	–0,12,5 МПа	_	±0,0001 × P _B	_	_
	–0,11 МПа	_	_	±0,0001 × P _B	±0,0002 × P _E
	12,5 МПа	_	_	±0,00025 × P	±0,00050 × F
	02,5 МПа	00,6 МПа	$\pm 0,0001 \times P_{_{B}}$	-	_
	01 МПа	00,24 МПа	_	±0,0001 × P _B	±0,0002 × P ₁
862	12,5 МПа	0,240,6 МПа	_	±0,00025 × P	±0,00050 × F
002	−0,12,5 МПа	–0,10,6 МПа	±0,0001 × P _B	_	_
	-0,11 МПа	– 0,10,24 МПа	_	±0,0001 × P _B	±0,0002 × P _E
	12,5 МПа	0,240,6 МПа	_	±0,00025 × P	±0,00050 × F
v					
— верхний пред	цел измерений диапазо	она № 1 или № 2. Р —	измеренное значе	ние давления.	

Таблица 3. Основные метрологические характеристики измерительного модуля ЭЛЕМЕР-АКД-12КИ

Измеряемая величина	Диапазон измерений	Пределы допускаемой основной абсолютной погрешности измерений
Ток	025 mA	±(10 ⁻⁴ × l + 1) мкА
	0100 мВ	±(7 × 10 ⁻⁵ × U + 3) мкВ
Напряжение	01 B	±(10 ⁻⁴ × U + 0,03) mB
	010 B	±(10 ⁻⁴ × U + 0,3) мВ

Соответствие требованиям, предъявляемым к рабочим эталонам

Таблица 4

Рабочий эталон	Разряд	Нормативный документ.
Единицы силы постоянного электрического тока	1	Приложение А к приказу Росстандарта № 2091 от 01.10.2018
Единицы постоянного электрического напряжения	3	Приказ Росстандарта №3457 от 30.12.2019
Единицы давления	определяется моделью и классом точности АКД	Приказ Росстандарта №1339 от 29.06.2018, Приказ Росстандарта от 06.12.2019 №2900

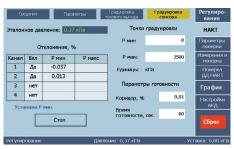
Режимы работы ЭЛЕМЕР-АКД-12КИ

Режим работы «Регулирование»

Режим предназначен для прецизионного воспроизведения и измерения эталонного значения давления.

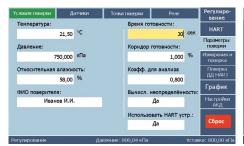
Примеры экранных форм режима «Регулирование»

Режим работы «HART»

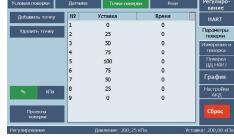

Данный режим работы предназначен для работы с преобразователями давления, поддерживающими обмен по цифровому протоколу HART. Пользователю доступны следующие функции:

- Конфигурирование датчиков давления;
- Установка нуля преобразователя;
- Проверка и корректировка верхнего и нижнего предела выходного унифицированного сигнала 4...20 мА;
- Запись верхнего и нижнего предела измерений давления (подстройка сенсора);
- Поверка датчиков давления по цифровому протоколу HART.

Примеры экранных форм режима работы «HART»

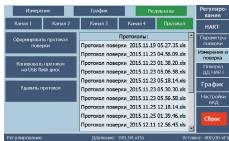


Режим работы «Поверка»


Данный режим предназначен для автоматизированного процесса поверки датчиков давления и ЭКМ. Пользователь вводит в ЭЛЕМЕР-АКД-12КИ условия поверки, ФИО поверителя, параметры поверяемых СИ, их классы точности и ряд нагружения. В ПО имеется возможность сохранения и загрузки большинства настроек в виде «проектов поверки». При подключении датчиков давления с поддержкой цифрового протокола НАRT, параметры поверяемых СИ автоматически считываются из поверяемых приборов.

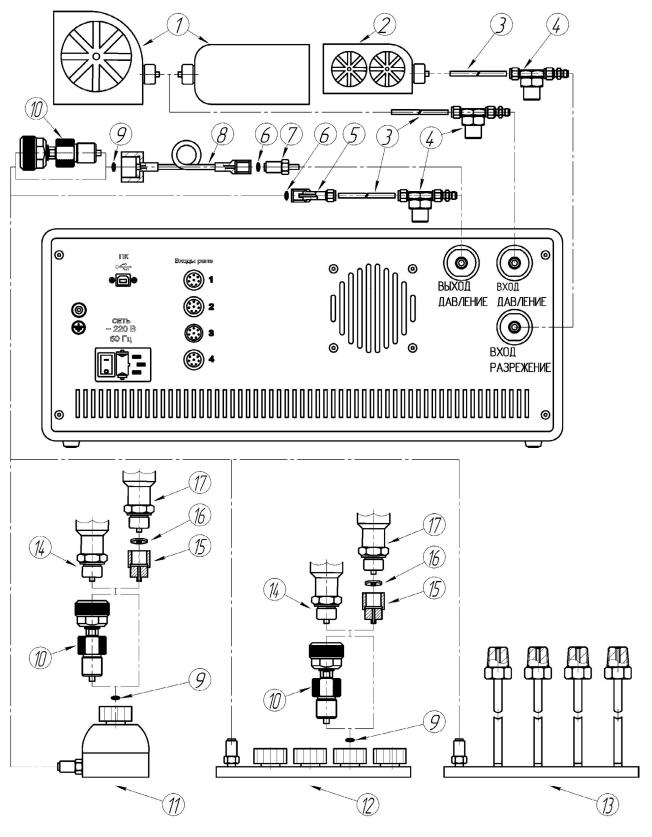
Калибратор давления, в соответствии с «проектом поверки», производит автоматизированнное изменение давления согласно ряду нагружения, с отслеживанием дрейфов и показаний датчиков давления, расчетом погрешности и формированием протокола поверки. Сформированный протокол поверки может быть перенесен на ПК через USB-накопитель или посредством прямого подключения.

Примеры экранных форм настройки параметров режима «Поверка»


Условия поверки	Датчики	Точки г	юверки	Реле	Регулиро- вание
№ канала	1	2	3	4	
Подключён	Да	Да	Нет	Нет	HART
Тазвание	AIR-10SH-I	Elemer-100			Параметры поверки
Чодель					Измерения и
Серийный №	1011525	15040248			поверка
Рв	1600,000	1600,000			Поверка ДД НАКТ
Рн	0,000	0,000			
Единицы изм.	кПа	кПа			График
Зреня денпф.	0,000	0,500			Настройки
Зависимость	Линейная	Линейная			АКД
Допуск, %	0,250	0,100			Сброс
Тип вых. сигнала	420 мА	420 мА			
Регулирование		Давление: 66	52,47 кПа	Уста	=∎ авка: 200,00 кПа

Примеры экранных форм выполнения автоматической поверки СИ давления

Регулиро- вание	зультаты	Pe.	рик	Гра	61B	Измерен	L
HART	Протокол	нал 4	ыл 3	2 Каян	Канал 2	нал 1	Ka
Параметры	ПГ, %		Ризм,	Іизм, мА	la I	Рат, кП	Иō
поверки	-0,059		-0,9	3,990		-0,05	1
Измерения и поверка	-0,034		395,0	7,951	3	395,63	2
Поверка	-0,005		797,	11,972	5	797,25	3
ДД HART	0,001		1199,	15,999	5	1199,8	4
График	0,047		1604,	20,045	5	1603,7	5
	-0,012		1204,	16,043	1	1204,5	6
Настройки АКД	0,015		804,4	12,044	5	804,16	7
41	-0,036		404,2	8,043	4	404,84	8
Сброс	-0.022		8,04	4,080		8,40	9



Соединительные кабели для «ЭЛЕМЕР-АКД-12КИ»

Таблица 5

Назначение кабеля	Кол-во в базовом комплекте поставки	Код при доп. заказе
Кабель для питания и измерения сигнала преобразователей давления с унифицированным выходным сигналом 420 мА	4	КИ №08 I2
Кабель для измерения сигнала преобразователей с унифицированным выходным сигналом 05 мА, 420 мА	1	КИ №05 І1
Кабель для измерения напряжения 0100 мВ	_	КИ №06 U1
Кабель для измерения напряжения 01, 010 В	_	KИ №07 U2
Кабель для подключения преобразователей давления при тестировании реле	1	KT2
Ответная часть разъема PLT-168-PG (для самостоятельного изготовления кабелей)	_	PLT168
Кабель USB А-В (для связи ЭЛЕМЕР-АКД-12К с ПК)	1	_

Лабораторный автоматический калибратор давления ЭЛЕМЕР-АКД-12К(И) Схема пневматических соединений «ЭЛЕМЕР-АКД-12К»

Описание позиций для схемы пневматических соединений «ЭЛЕМЕР-АКД-12К»

Таблица 6

Позиция іа рисунке	Наименование	Код при заказе
1	Внешний источник давления	Таблица 7
2	Вакуумный насос	Таблица 7
3	Трубка пластиковая, Ø6 мм, длиной L метров (до 600 кПа)	TΠ-6-L
	Трубка медная, Ø6 мм, длиной L метров (свыше 600 кПа)	TM-6-L
4	Фильтр для присоединения к трубке Ø6 мм	БФ-1-Т-6
	Сменный фильтрующий элемент для БФ-1-Т-6	ЭФ-БФ-1
5	Переходной штуцер для присоединения ГШ-4-M20×1,5; ЛШ-4-M20×1,5; ГФ-4-K1/4; Б-1-M20×1,5 (таблица 8)	ПШ-В-М16х2-Т-6
6	Уплотнительное кольцо 005-008-19	Кольцо 005-008-19
7	Переходной штуцер для присоединения шланга с накидной гайкой M16×2 (позиция 8)	ПШ-Н-М16х2-Н-Т-6
8	Соединительный шланг, 1 м.Для присоединения ГШ-4-M20×1,5; ЛШ-4-M20×1,5; ГФ-4-K1/4; Б-1-M20×1,5 (таблица 8).	ШЛ-В-М16х2-В-М16х2-1М
8	Соединительный шланг, 1 м. Для присоединения КШП-4-M20×1,5; КШ-4-M20×1,5; КШ-2-M20×1,5; КШ-1-M20×1,5 (таблица 8)	ШЛ-B-M16x2-B-20x1,5-1M
9	Уплотнительное кольцо 005-008-19 (при применении шланга ШЛ-B-M16×2-B-M16×2-1M)	Кольцо 005-008-19
9	Уплотнительное кольцо 009-012-19 (при применении шланга ШЛ-B-M16×2-B-20×1,5-1M)	Кольцо 009-012-19
10	Фильтр с внутренней и наружной резьбой M20×1,5 (при применении шланга ШЛ-В-M16×2-В-20×1,5-1М)	БФ-2
10	Сменный фильтрующий элемент для БФ-2	ЭФ-БФ-2
11	Устройства для присоединения 1-го датчика с внешней резьбой M20×1,5 (КШ-1-M20×1,5; Б-1-M20×1,5)	Таблица 8
12	Устройства для присоединения 2-х или 4-х датчиков с внешней резьбой M20×1,5 (КШП-4-M20×1,5; КШ-4-M20×1,5; КШ-4-M20×1,5; ГШ-4-M20×1,5)	Таблица 8
13	Гребенка для фланцевого присоединения 4-х датчиков с внутренней резьбой К1/4"	ГФ-4-К1/4
14	Поверяемый датчик давления с наружной резьбой M20×1,5	_
15	Переходной штуцер или набор штуцеров	Таблица 9
16	Уплотнение	Таблица 11
17	Поверяемый датчик давления с резьбой, отличающейся от наружной резьбы M20×1,5	_

Внешние источники давления

Таблица 7

таолища	•						
Код при заказе	Описание						
Б20	Баллон 20 л х 30 МПа. Поставляется в комплекте со шлангом и переходником для подключения к «ЭЛЕМЕР-АКД-12К»						
КМС	Компрессорная министанция 20 МПа, 220 В (для заправки баллона Б20). Поставляется в комплекте со шлангом и переходником для подключения к баллону «Б20»						
ПКМС	Переносная компрессорная министанция 20 МПа, 220 В. Поставляется в комплекте со шлангом и переходником для подключения к «ЭЛЕМЕР-АКД-12К»						
ВН	Вакуумный насос. Поставляется в комплекте со шлангом и переходником для подключения к «ЭЛЕМЕР-АКД-12К»						
АИД	Автоматический источник давления 4 МПа						

Гребёнки, коллектора, блоки и самоуплотняющиеся быстрогайки

Таблица 8

Описание	Код при заказе	Внешний вид
Коллектор для штуцерного подключения 4-х датчиков с наружной резьбой M20×1,5	КШП-4-M20×1,5	
Коллектор для штуцерного подключения 4-х датчиков с наружной резьбой M20×1,5	КШ-4-M20×1,5	

МЕТРОЛОГИЯ

Лабораторный автоматический калибратор давления ЭЛЕМЕР-АКД-12К(И)

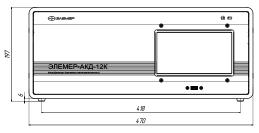
Описание	Код при заказе	Внешний вид
Коллектор для штуцерного подключения 2-х датчиков с наружной резьбой M20×1,5	КШ-2-M20×1,5	
Коллектор для штуцерного подключения 1-го датчика с наружной резьбой M20×1,5	КШ-1-M20×1,5	
Гребенка для штуцерного подключения 4-х датчиков с наружной резьбой M20×1,5	ГШ-4-M20×1,5	
Гребенка для штуцерного подключения 4-х датчиков давления с наружной резьбой M20×1,5	ЛШ-4-M20×1,5	
Гребенка для фланцевого подключения 4-х датчиков с внутренней резьбой К¾"	ГФ-4-К1/4	9 0
Блок для штуцерного подключения 1-го датчика с наружной резьбой M20×1,5	Б-1-M20×1,5	
Заглушки для гребенки ГШ	3-H-M20×1,5	
Заглушки для гребенки ГФ	3-B-K1/4	

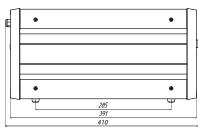
Переходные штуцеры

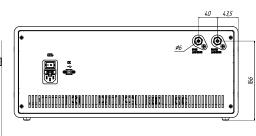
Резьбовое соединение		Код при заказе	
наружная M20×1,5	внутренняя G1/8′′	ПШ-H-M20×1,5-B-G1/8	
наружная M20×1,5	внутренняя G¼′′	ПШ-H-M20×1,5-B-G1/4	
наружная M20×1,5	внутренняя G ^{3/8} "	ПШ-H-M20×1,5-B-G3/8	
наружная M20×1,5	внутренняя G½′′	внутренняя G½" ПШ-H-M20×1,5-B-G1/2	
наружная M20×1,5	внутренняя G1"»	ПШ-H-M20×1,5-B-G1	
наружная M20×1,5	внутренняя М10×1	ПШ-Н-М20×1,5-В-М10×1	
наружная M20×1,5	внутренняя M12×1	ПШ-Н-М20×1,5-В-М12×1	
наружная M20×1,5	внутренняя M12×1,5	ПШ-H-M20×1,5-B-M12×1,5	
наружная M20×1,5	внутренняя М14×1,5	ПШ-H-M20×1,5-B-M14×1,5	
наружная M20×1,5	внутренняя М16×1,5	ПШ-H-M20×1,5-B-M16×1,5	
наружная M20×1,5	внутренняя M24×1,5	ПШ-H-M20×1,5-B-M24×1,5	
наружная M20×1,5	внутренняя М39×1,5	ПШ-H-M20×1,5-B-M39×1,5	

Резьбовое соединение		Код при заказе	Внешний вид	
наружная M20×1,5	внутренняя K1/8′′ (1/8′′NPT)	ПШ-H-M20×1,5-B-K1/8		
наружная M20×1,5	внутренняя К¼′′ (¼′′NPT)	ПШ-H-M20×1,5-B-K1/4		
наружная M20×1,5	внутренняя К3/8′′ (3/8′′NPT)	нняя K3/8" (3/8"NPT) ПШ-H-M20×1,5-B-K3/8		
наружная M20×1,5	внутренняя К½" (½"NPT)	ПШ-H-M20×1,5-B-K1/2		
наружная M20×1,5	наружная G1/8′′	ПШ-H-M20×1,5-H-G1/8		
наружная M20×1,5	наружная G¼′′	ПШ-H-M20×1,5-H-G1/4		
наружная M20×1,5	наружная G½′′	ПШ-H-M20×1,5-H-G1/2		
наружная M20×1,5	наружная M10×1	ПШ-H-M20×1,5-H-M10×1		
наружная M20×1,5	наружная M12×1,5	ПШ-H-M20×1,5-H-M12×1,5		
наружная M20×1,5	наружная M20×1,5	ПШ-H-M20×1,5-H-M20×1,5		
наружная M20×1,5	наружная К¹/8′′ (¹/8′′NPT)	ПШ-H-M20×1,5-H-K1/8		
наружная M20×1,5	наружная К¼'' (¼''NPT)	ПШ-H-M20×1,5-H-K1/4		
наружная M20×1,5	наружная К½" (½"NPT)	ПШ-H-M20×1,5-H-K1/2		
наружная M16×2	наружная M20×1,5	ПШ-H-M16×2-H-M20×1,5		

Соединительные шланги Таблица 10


Резьбовое соединение		Длина, м	Код при заказе
накидная гайка M16×2	накидная гайка G1/4"	1	ШЛ-B-M16×2-B-G1/4-1M
накидная гайка M16×2	накидная гайка M16×2	1	ШЛ-B-M16×2-B-M16×2-1M
накидная гайка M16×2	накидная гайка M16×2	2	ШЛ-B-M16×2-B-M16×2-2M
накидная гайка M16×2	накидная гайка M20×1,5	1	ШЛ-B-M16×2-B-M20×1,5-1M
накидная гайка M16×2	накидная гайка M20×1,5	2	ШЛ-B-M16×2-B-M20×1,5-2M
накидная гайка M20×1,5	накидная гайка M20×1,5	1	ШЛ-B-M20×1,5-B-M20×1,5-1M
накидная гайка M20×1,5	накидная гайка M20×1,5	2	ШЛ-B-M20×1,5-B-M20×1,5-2M
накидная гайка M16×2	2 накидных гайки M20×1,5	1	ШЛ-B-M16×2-ДД-B-M20×1,5


Уплотнения


Таблица 11

таолица 11				
	Для резьбовы			
Материал	При уплотнении внутри соединения	При уплотнении снаружи соединения	Код при заказе	
Резинометаллическая шайба	G ^{1/8} ", M10	_	ПР-7,5-РМ	
Резинометаллическая шайба	G¼", M12, M14	_	ПР-10-РМ	
Резинометаллическая шайба	G ^{3/8} ", M16, M20	_	ПР-14-РМ	
Фторопласт Ф-4УВ15	M20, G½"	_	Т1Ф	
медь М1	M20, G½"	_	T1M	
Резинометаллическая шайба	G½"	G1/8"	ПР-18-РМ	
Резинометаллическая шайба	-	G¾"	ПР-21-РМ	
Резиновое кольцо	M16	-	Кольцо 005-008-19 ГОСТ 9833-73	
Резиновое кольцо	M20	_	Кольцо 009-012-19 ГОСТ 9833-73	

Габаритные размеры

Пример заказа

Часть 1. ЭЛЕМЕР-АКД-12К

ЭЛЕМЕР-АКД-12К	И	_	862	Α	_	НБ17	КИ №05 І1	ТУ
1	2	3	4	5	6	7	8	9

- 1. Тип прибора
- 2. Модификация:
 - «—» без блока измерения сигналов
 - И с блоком измерения сигналов*
- 3. Встроенный модуль измерения напряжения (опция, указывается только для модификации И): МН
- 4. Код модели (таблица 1).
- 5. Индекс модели (таблица 1, 2):
 - A0
 - A
 - В (базовое исполнение)
- 6. Код встроенного источника давления (опция, кроме моделей 171, 172, 171E, 172E, 861, 862) (индекс заказа— ВИД)
- 7. Ноутбук (опция)*:
 - НБ15
 - НБ17
- 8. Наличие дополнительных кабелей (опция таблица 5)
- 9. Обозначение технических условий ТУ (ТУ 4381-130-13282997-2015)
- * в базовый комплект поставки входит бесплатное программное обеспечение «Автоматизированное рабочее место АКД-12» («АРМ АКД-12»). При выборе опции «НБ15» или «НБ17» поставляется ноутбук (с диагональю экрана 15" или 17") с установленным программным обеспечением.

Часть 2. Дополнительные монтажные элементы

Для удобства эксплуатации калибратора давления автоматического ЭЛЕМЕР-АКД-12К возможно применение следующих изделий, производства ООО НПП «ЭЛЕМЕР»:

- дополнительные кабели (только для модификации «И» таблица 5);
- источники давления (таблица 7);
- средства присоединения датчиков давления (таблица 5);
- соединительные шланги и трубки (таблицы 6, 10);
- переходные штуцеры (таблица 9);
- уплотнения (таблица 11).

Для заказа необходимого оборудования нужно воспользоваться соответствующими формами заказа.

Пример заказа ЭЛЕМЕР-АКД-12К в комплекте с дополнительным оборудованием

- 1. ЭЛЕМЕР-АКД-12К И 862 А HБ17 ТУ 4381-130-13282997-2015
- 2. Автоматический источник давления ЭЛЕМЕР-АИД-40
- 3. Вакуумный насос ВН
- 4. Трубка ТМ-6-3м
- 5. Трубка ТП-6-3м
- 6. Трубка ТМ-6-2м7. Фильтр БФ-1-Т-6 3 шт.
- 8. Фильтрующий элемент ЭФ-БФ-1 (количество по заказу)
- 9. Переходной штуцер ПШ-H-M16×2-T-6
- 10. Уплотнительное кольцо 005-008-19 (количество по заказу)
- 11. Гребенка ГШ-4-M20×1,5
- 12. Заглушка 3-H-M20×1,5 (количество по заказу)
- 13. Уплотнительное кольцо 009-012-19 (количество по заказу)
- 14. Переходной штуцер ПШ-H-M20×1,5-B-G1/4 (количество по заказу)
- 15. Уплотнение ПР-10-РМ (количество по заказу)